Copied to
clipboard

G = C12.93S32order 432 = 24·33

13rd non-split extension by C12 of S32 acting via S32/C3⋊S3=C2

metabelian, supersoluble, monomial, A-group

Aliases: C12.93S32, C329(S3×C8), C3313(C2×C8), C324C815S3, (C3×C12).168D6, C6.17(S3×Dic3), C3⋊Dic3.5Dic3, C32(C12.29D6), C6.18(C6.D6), C4.6(C324D6), (C32×C12).70C22, C32(S3×C3⋊C8), C3⋊S33(C3⋊C8), (C3×C3⋊S3)⋊6C8, C327(C2×C3⋊C8), (C6×C3⋊S3).7C4, (C4×C3⋊S3).7S3, (C3×C6).53(C4×S3), (C12×C3⋊S3).11C2, (C2×C3⋊S3).5Dic3, (C3×C3⋊Dic3).9C4, C2.1(C339(C2×C4)), (C3×C324C8)⋊13C2, (C32×C6).44(C2×C4), (C3×C6).40(C2×Dic3), SmallGroup(432,455)

Series: Derived Chief Lower central Upper central

C1C33 — C12.93S32
C1C3C32C33C32×C6C32×C12C12×C3⋊S3 — C12.93S32
C33 — C12.93S32
C1C4

Generators and relations for C12.93S32
 G = < a,b,c,d,e | a3=b3=c8=d3=e2=1, ab=ba, cac-1=a-1, ad=da, ae=ea, cbc-1=ebe=b-1, bd=db, cd=dc, ce=ec, ede=d-1 >

Subgroups: 456 in 126 conjugacy classes, 39 normal (19 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, S3, C6, C6, C6, C8, C2×C4, C32, C32, C32, Dic3, C12, C12, C12, D6, C2×C6, C2×C8, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, C3⋊C8, C24, C4×S3, C2×C12, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, S3×C8, C2×C3⋊C8, C3×C3⋊S3, C32×C6, C3×C3⋊C8, C324C8, S3×C12, C4×C3⋊S3, C3×C3⋊Dic3, C32×C12, C6×C3⋊S3, S3×C3⋊C8, C12.29D6, C3×C324C8, C12×C3⋊S3, C12.93S32
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, Dic3, D6, C2×C8, C3⋊C8, C4×S3, C2×Dic3, S32, S3×C8, C2×C3⋊C8, S3×Dic3, C6.D6, C324D6, S3×C3⋊C8, C12.29D6, C339(C2×C4), C12.93S32

Smallest permutation representation of C12.93S32
On 48 points
Generators in S48
(1 28 45)(2 46 29)(3 30 47)(4 48 31)(5 32 41)(6 42 25)(7 26 43)(8 44 27)(9 35 19)(10 20 36)(11 37 21)(12 22 38)(13 39 23)(14 24 40)(15 33 17)(16 18 34)
(1 45 28)(2 29 46)(3 47 30)(4 31 48)(5 41 32)(6 25 42)(7 43 26)(8 27 44)(9 35 19)(10 20 36)(11 37 21)(12 22 38)(13 39 23)(14 24 40)(15 33 17)(16 18 34)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 28 45)(2 29 46)(3 30 47)(4 31 48)(5 32 41)(6 25 42)(7 26 43)(8 27 44)(9 35 19)(10 36 20)(11 37 21)(12 38 22)(13 39 23)(14 40 24)(15 33 17)(16 34 18)
(1 22)(2 23)(3 24)(4 17)(5 18)(6 19)(7 20)(8 21)(9 42)(10 43)(11 44)(12 45)(13 46)(14 47)(15 48)(16 41)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(31 33)(32 34)

G:=sub<Sym(48)| (1,28,45)(2,46,29)(3,30,47)(4,48,31)(5,32,41)(6,42,25)(7,26,43)(8,44,27)(9,35,19)(10,20,36)(11,37,21)(12,22,38)(13,39,23)(14,24,40)(15,33,17)(16,18,34), (1,45,28)(2,29,46)(3,47,30)(4,31,48)(5,41,32)(6,25,42)(7,43,26)(8,27,44)(9,35,19)(10,20,36)(11,37,21)(12,22,38)(13,39,23)(14,24,40)(15,33,17)(16,18,34), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,28,45)(2,29,46)(3,30,47)(4,31,48)(5,32,41)(6,25,42)(7,26,43)(8,27,44)(9,35,19)(10,36,20)(11,37,21)(12,38,22)(13,39,23)(14,40,24)(15,33,17)(16,34,18), (1,22)(2,23)(3,24)(4,17)(5,18)(6,19)(7,20)(8,21)(9,42)(10,43)(11,44)(12,45)(13,46)(14,47)(15,48)(16,41)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(31,33)(32,34)>;

G:=Group( (1,28,45)(2,46,29)(3,30,47)(4,48,31)(5,32,41)(6,42,25)(7,26,43)(8,44,27)(9,35,19)(10,20,36)(11,37,21)(12,22,38)(13,39,23)(14,24,40)(15,33,17)(16,18,34), (1,45,28)(2,29,46)(3,47,30)(4,31,48)(5,41,32)(6,25,42)(7,43,26)(8,27,44)(9,35,19)(10,20,36)(11,37,21)(12,22,38)(13,39,23)(14,24,40)(15,33,17)(16,18,34), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,28,45)(2,29,46)(3,30,47)(4,31,48)(5,32,41)(6,25,42)(7,26,43)(8,27,44)(9,35,19)(10,36,20)(11,37,21)(12,38,22)(13,39,23)(14,40,24)(15,33,17)(16,34,18), (1,22)(2,23)(3,24)(4,17)(5,18)(6,19)(7,20)(8,21)(9,42)(10,43)(11,44)(12,45)(13,46)(14,47)(15,48)(16,41)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(31,33)(32,34) );

G=PermutationGroup([[(1,28,45),(2,46,29),(3,30,47),(4,48,31),(5,32,41),(6,42,25),(7,26,43),(8,44,27),(9,35,19),(10,20,36),(11,37,21),(12,22,38),(13,39,23),(14,24,40),(15,33,17),(16,18,34)], [(1,45,28),(2,29,46),(3,47,30),(4,31,48),(5,41,32),(6,25,42),(7,43,26),(8,27,44),(9,35,19),(10,20,36),(11,37,21),(12,22,38),(13,39,23),(14,24,40),(15,33,17),(16,18,34)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,28,45),(2,29,46),(3,30,47),(4,31,48),(5,32,41),(6,25,42),(7,26,43),(8,27,44),(9,35,19),(10,36,20),(11,37,21),(12,38,22),(13,39,23),(14,40,24),(15,33,17),(16,34,18)], [(1,22),(2,23),(3,24),(4,17),(5,18),(6,19),(7,20),(8,21),(9,42),(10,43),(11,44),(12,45),(13,46),(14,47),(15,48),(16,41),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(31,33),(32,34)]])

60 conjugacy classes

class 1 2A2B2C3A3B3C3D···3H4A4B4C4D6A6B6C6D···6H6I6J8A···8H12A···12F12G···12P12Q12R24A···24H
order12223333···344446666···6668···812···1212···12121224···24
size11992224···411992224···418189···92···24···4181818···18

60 irreducible representations

dim1111112222222244444444
type+++++-+-+-+
imageC1C2C2C4C4C8S3S3Dic3D6Dic3C3⋊C8C4×S3S3×C8S32S3×Dic3C6.D6C324D6S3×C3⋊C8C12.29D6C339(C2×C4)C12.93S32
kernelC12.93S32C3×C324C8C12×C3⋊S3C3×C3⋊Dic3C6×C3⋊S3C3×C3⋊S3C324C8C4×C3⋊S3C3⋊Dic3C3×C12C2×C3⋊S3C3⋊S3C3×C6C32C12C6C6C4C3C3C2C1
# reps1212282113144832124224

Matrix representation of C12.93S32 in GL6(𝔽73)

72720000
100000
001000
000100
000010
000001
,
100000
010000
0007200
0017200
000010
000001
,
5100000
22220000
0007200
0072000
0000460
0000046
,
100000
010000
001000
000100
00007272
000010
,
7200000
0720000
000100
001000
0000072
0000720

G:=sub<GL(6,GF(73))| [72,1,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[51,22,0,0,0,0,0,22,0,0,0,0,0,0,0,72,0,0,0,0,72,0,0,0,0,0,0,0,46,0,0,0,0,0,0,46],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,0,72,0],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,72,0,0,0,0,72,0] >;

C12.93S32 in GAP, Magma, Sage, TeX

C_{12}._{93}S_3^2
% in TeX

G:=Group("C12.93S3^2");
// GroupNames label

G:=SmallGroup(432,455);
// by ID

G=gap.SmallGroup(432,455);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,36,58,1124,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^8=d^3=e^2=1,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,a*e=e*a,c*b*c^-1=e*b*e=b^-1,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽