metabelian, supersoluble, monomial, A-group
Aliases: C12.93S32, C32⋊9(S3×C8), C33⋊13(C2×C8), C32⋊4C8⋊15S3, (C3×C12).168D6, C6.17(S3×Dic3), C3⋊Dic3.5Dic3, C3⋊2(C12.29D6), C6.18(C6.D6), C4.6(C32⋊4D6), (C32×C12).70C22, C3⋊2(S3×C3⋊C8), C3⋊S3⋊3(C3⋊C8), (C3×C3⋊S3)⋊6C8, C32⋊7(C2×C3⋊C8), (C6×C3⋊S3).7C4, (C4×C3⋊S3).7S3, (C3×C6).53(C4×S3), (C12×C3⋊S3).11C2, (C2×C3⋊S3).5Dic3, (C3×C3⋊Dic3).9C4, C2.1(C33⋊9(C2×C4)), (C3×C32⋊4C8)⋊13C2, (C32×C6).44(C2×C4), (C3×C6).40(C2×Dic3), SmallGroup(432,455)
Series: Derived ►Chief ►Lower central ►Upper central
C33 — C12.93S32 |
Generators and relations for C12.93S32
G = < a,b,c,d,e | a3=b3=c8=d3=e2=1, ab=ba, cac-1=a-1, ad=da, ae=ea, cbc-1=ebe=b-1, bd=db, cd=dc, ce=ec, ede=d-1 >
Subgroups: 456 in 126 conjugacy classes, 39 normal (19 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, S3, C6, C6, C6, C8, C2×C4, C32, C32, C32, Dic3, C12, C12, C12, D6, C2×C6, C2×C8, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, C3⋊C8, C24, C4×S3, C2×C12, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, S3×C8, C2×C3⋊C8, C3×C3⋊S3, C32×C6, C3×C3⋊C8, C32⋊4C8, S3×C12, C4×C3⋊S3, C3×C3⋊Dic3, C32×C12, C6×C3⋊S3, S3×C3⋊C8, C12.29D6, C3×C32⋊4C8, C12×C3⋊S3, C12.93S32
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, Dic3, D6, C2×C8, C3⋊C8, C4×S3, C2×Dic3, S32, S3×C8, C2×C3⋊C8, S3×Dic3, C6.D6, C32⋊4D6, S3×C3⋊C8, C12.29D6, C33⋊9(C2×C4), C12.93S32
(1 28 45)(2 46 29)(3 30 47)(4 48 31)(5 32 41)(6 42 25)(7 26 43)(8 44 27)(9 35 19)(10 20 36)(11 37 21)(12 22 38)(13 39 23)(14 24 40)(15 33 17)(16 18 34)
(1 45 28)(2 29 46)(3 47 30)(4 31 48)(5 41 32)(6 25 42)(7 43 26)(8 27 44)(9 35 19)(10 20 36)(11 37 21)(12 22 38)(13 39 23)(14 24 40)(15 33 17)(16 18 34)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 28 45)(2 29 46)(3 30 47)(4 31 48)(5 32 41)(6 25 42)(7 26 43)(8 27 44)(9 35 19)(10 36 20)(11 37 21)(12 38 22)(13 39 23)(14 40 24)(15 33 17)(16 34 18)
(1 22)(2 23)(3 24)(4 17)(5 18)(6 19)(7 20)(8 21)(9 42)(10 43)(11 44)(12 45)(13 46)(14 47)(15 48)(16 41)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(31 33)(32 34)
G:=sub<Sym(48)| (1,28,45)(2,46,29)(3,30,47)(4,48,31)(5,32,41)(6,42,25)(7,26,43)(8,44,27)(9,35,19)(10,20,36)(11,37,21)(12,22,38)(13,39,23)(14,24,40)(15,33,17)(16,18,34), (1,45,28)(2,29,46)(3,47,30)(4,31,48)(5,41,32)(6,25,42)(7,43,26)(8,27,44)(9,35,19)(10,20,36)(11,37,21)(12,22,38)(13,39,23)(14,24,40)(15,33,17)(16,18,34), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,28,45)(2,29,46)(3,30,47)(4,31,48)(5,32,41)(6,25,42)(7,26,43)(8,27,44)(9,35,19)(10,36,20)(11,37,21)(12,38,22)(13,39,23)(14,40,24)(15,33,17)(16,34,18), (1,22)(2,23)(3,24)(4,17)(5,18)(6,19)(7,20)(8,21)(9,42)(10,43)(11,44)(12,45)(13,46)(14,47)(15,48)(16,41)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(31,33)(32,34)>;
G:=Group( (1,28,45)(2,46,29)(3,30,47)(4,48,31)(5,32,41)(6,42,25)(7,26,43)(8,44,27)(9,35,19)(10,20,36)(11,37,21)(12,22,38)(13,39,23)(14,24,40)(15,33,17)(16,18,34), (1,45,28)(2,29,46)(3,47,30)(4,31,48)(5,41,32)(6,25,42)(7,43,26)(8,27,44)(9,35,19)(10,20,36)(11,37,21)(12,22,38)(13,39,23)(14,24,40)(15,33,17)(16,18,34), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,28,45)(2,29,46)(3,30,47)(4,31,48)(5,32,41)(6,25,42)(7,26,43)(8,27,44)(9,35,19)(10,36,20)(11,37,21)(12,38,22)(13,39,23)(14,40,24)(15,33,17)(16,34,18), (1,22)(2,23)(3,24)(4,17)(5,18)(6,19)(7,20)(8,21)(9,42)(10,43)(11,44)(12,45)(13,46)(14,47)(15,48)(16,41)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(31,33)(32,34) );
G=PermutationGroup([[(1,28,45),(2,46,29),(3,30,47),(4,48,31),(5,32,41),(6,42,25),(7,26,43),(8,44,27),(9,35,19),(10,20,36),(11,37,21),(12,22,38),(13,39,23),(14,24,40),(15,33,17),(16,18,34)], [(1,45,28),(2,29,46),(3,47,30),(4,31,48),(5,41,32),(6,25,42),(7,43,26),(8,27,44),(9,35,19),(10,20,36),(11,37,21),(12,22,38),(13,39,23),(14,24,40),(15,33,17),(16,18,34)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,28,45),(2,29,46),(3,30,47),(4,31,48),(5,32,41),(6,25,42),(7,26,43),(8,27,44),(9,35,19),(10,36,20),(11,37,21),(12,38,22),(13,39,23),(14,40,24),(15,33,17),(16,34,18)], [(1,22),(2,23),(3,24),(4,17),(5,18),(6,19),(7,20),(8,21),(9,42),(10,43),(11,44),(12,45),(13,46),(14,47),(15,48),(16,41),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(31,33),(32,34)]])
60 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | ··· | 3H | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | ··· | 6H | 6I | 6J | 8A | ··· | 8H | 12A | ··· | 12F | 12G | ··· | 12P | 12Q | 12R | 24A | ··· | 24H |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | ··· | 3 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 8 | ··· | 8 | 12 | ··· | 12 | 12 | ··· | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 9 | 9 | 2 | 2 | 2 | 4 | ··· | 4 | 1 | 1 | 9 | 9 | 2 | 2 | 2 | 4 | ··· | 4 | 18 | 18 | 9 | ··· | 9 | 2 | ··· | 2 | 4 | ··· | 4 | 18 | 18 | 18 | ··· | 18 |
60 irreducible representations
Matrix representation of C12.93S32 ►in GL6(𝔽73)
72 | 72 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
51 | 0 | 0 | 0 | 0 | 0 |
22 | 22 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 46 | 0 |
0 | 0 | 0 | 0 | 0 | 46 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 72 |
0 | 0 | 0 | 0 | 1 | 0 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
0 | 0 | 0 | 0 | 72 | 0 |
G:=sub<GL(6,GF(73))| [72,1,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[51,22,0,0,0,0,0,22,0,0,0,0,0,0,0,72,0,0,0,0,72,0,0,0,0,0,0,0,46,0,0,0,0,0,0,46],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,0,72,0],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,72,0,0,0,0,72,0] >;
C12.93S32 in GAP, Magma, Sage, TeX
C_{12}._{93}S_3^2
% in TeX
G:=Group("C12.93S3^2");
// GroupNames label
G:=SmallGroup(432,455);
// by ID
G=gap.SmallGroup(432,455);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,36,58,1124,571,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^8=d^3=e^2=1,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,a*e=e*a,c*b*c^-1=e*b*e=b^-1,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations